Restoration of Rostral Ventrolateral Medulla Cystathionine-γ Lyase Activity Underlies Moxonidine-Evoked Neuroprotection and Sympathoinhibition in Diabetic Rats.

نویسندگان

  • Mohamed A Fouda
  • Shaimaa S El-Sayed
  • Abdel A Abdel-Rahman
چکیده

We recently demonstrated a fundamental role for cystathionine-γ lyase (CSE)-derived hydrogen sulfide (H2S) in the cardioprotective effect of the centrally acting drug moxonidine in diabetic rats. Whether a downregulated CSE/H2S system in the rostral ventrolateral medulla (RVLM) underlies neuronal oxidative stress and sympathoexcitation in diabetes has not been investigated. Along with addressing this question, we tested the hypothesis that moxonidine prevents the diabetes-evoked neurochemical effects by restoring CSE/H2S function within its major site of action, the RVLM. Ex vivo studies were performed on RVLM tissues of streptozotocin (55 mg/kg, i.p.) diabetic rats treated daily for 3 weeks with moxonidine (2 or 6 mg/kg; gavage), H2S donor sodium hydrosulfide (NaHS) (3.4 mg/kg, i.p.), CSE inhibitor DL-propargylglycine (DLP) (37.5 mg/kg, i.p.), a combination of DLP with moxonidine, or their vehicle. Moxonidine alleviated RVLM oxidative stress, neuronal injury, and increased tyrosine hydroxylase immunoreactivity (sympathoexcitation) by restoring CSE expression/activity as well as heme oxygenase-1 (HO-1) expression. A pivotal role for H2S in moxonidine-evoked neuroprotection is supported by the following: 1) NaHS replicated the moxonidine-evoked neuroprotection, and the restoration of RVLM HO-1 expression in diabetic rats; and 2) DLP abolished moxonidine-evoked neuroprotection in diabetic rats, and caused RVLM neurotoxicity, reminiscent of a diabetes-evoked neuronal phenotype, in healthy rats. These findings suggest a novel role for RVLM CSE/H2S/HO-1 in moxonidine-evoked neuroprotection and sympathoinhibition, and as a therapeutic target for developing new drugs for alleviating diabetes-evoked RVLM neurotoxicity and cardiovascular anomalies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABAergic mechanism in the rostral ventrolateral medulla contributes to the hypotension of moxonidine.

AIMS The depressor action of the centrally antihypertensive drug moxonidine has been attributed to activation of I(1)-imidazoline receptor in the rostral ventrolateral medulla (RVLM). The objective of this study was to determine the role of the γ-aminobutyric acid (GABA) mechanisms in the RVLM in mediating the effect of moxonidine in anaesthetized normotensive rats. METHODS AND RESULTS The re...

متن کامل

The imidazoline receptor in control of blood pressure by clonidine and allied drugs.

Clonidine, moxonidine, and rilmenidine are centrally acting antihypertensive agents that lower arterial pressure by inhibiting the tonic activity of sympathoexcitatory neurons in the rostral ventrolateral medulla. Competing hypotheses have been put forward by different investigators to explain the sympathoinhibition evoked by "imidazoline drugs": either via central actions at α2-adrenergic rece...

متن کامل

Cystathionine-β-Synthase Gene Transfer Into Rostral Ventrolateral Medulla Exacerbates Hypertension via Nitric Oxide in Spontaneously Hypertensive Rats Xiao-Cui Duan,1,2 Shang-Yu Liu,1 Rong Guo,3 Lin Xiao,1 Hong-Mei Xue,1 Qi Guo,1 Sheng Jin,1 and Yu-Ming Wu1

Hydrogen sulfide (H2S) is an endothelium-derived hyperpolarizing factor that enhances the relaxation of the peripheral vasculature,1–3 recent studies4–6 have also reported its physiological functions in the central nervous system. In mammalian tissues, H2S is produced through degradation of l-cysteine mainly by 2 main enzymes: cystathionineβ-synthase (CBS) and cystathionine-γ-lyase. CBS is prim...

متن کامل

Sympathoinhibitory mechanism of moxonidine: role of the inducible nitric oxide synthase in the rostral ventrolateral medulla.

AIMS The central antihypertensive drug moxonidine lowers blood pressure (BP) through stimulating an imidazoline receptor within the rostral ventrolateral medulla (RVLM). Nitric oxide (NO) generated by the inducible NO synthase (iNOS) in the RVLM has been suggested to be involved in tonic sympathetic inhibition. The aim of this study was to determine the role of NO generated by iNOS in mediating...

متن کامل

Sympathoinhibition evoked from caudal midline medulla is mediated by GABA receptors in rostral VLM.

The present study was performed to determine whether the powerful depressor and sympathoinhibitory response that can be evoked from neurons in the caudal midline medulla is mediated by γ-aminobutyric acidergic (GABAergic) inhibition of sympathoexcitatory neurons in the rostral part of the ventrolateral medulla (VLM). In anesthetized barointact and barodenervated rabbits, bilateral microinjectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 364 2  شماره 

صفحات  -

تاریخ انتشار 2018